

A Survey On: Attacks due to SQL injection and
their prevention method for web application

Shubham Srivastava
Department of Computer Science & Engineering

Teerthankar mahaveer, University

Moradabad (INDIA)

Abstract— In this paper we present a detailed review on
various types of SQL injection attacks and prevention
technique for web application. Here we are presenting our
findings from deep survey on SQL injection attack. This
paper is consist of following five section:[1] Introduction,
[2]Types of Sql Injection, [3] Related work,

[4] Conclusion, And [5] References.

Keywords— SQL injection, database security, authentication,
web system architecture

I. INTRODUCTION

The World Wide Web has been developed with very
rapid progress in recent years. Web applications use the
database at the backend for storing data and SQL
(Structured Query Language) for insertion and retrieval
of data. There are some malicious code that can be
attach to the SQL called SQL Injection.

SQL injection attacks are possible because web
application code is not secured during application
development. One of the best ways to secure
applications is by limiting access to those authorized to
access the application.

SQL injection is a hacking method that is based on the
security vulnerabilities of web application.

SQL Injection is a type of injection or attack in a Web
application, in which the attacker provides Structured
Query Language (SQL) code to a user input box of a
Web form to gain unauthorized and unlimited access.
The attacker’s input is transmitted into an SQL query in
such a way that it will form an SQL code [9], [5]. It is
categorized as one of the top-10 2010 Web application
vulnerabilities experienced by Web applications
according to OWASP (Open Web Application Security
Project) [10].

A. What is SQL Injection?

SQL Injection is one of the many web attack
mechanisms used by hackers to steal data from
organizations. It is perhaps one of the most common
application layer attack techniques used today. It is the
type of attack that takes advantage of improper coding
of our web applications that allows hacker to inject
SQL commands into say a login form to allow them to
gain access to the data held within our database.

In essence, SQL Injection arises because the fields
available for user input allow SQL statements to pass
through and query the database directly.

SQL Injection is the hacking technique which attempts
to pass SQL commands (statements) through a web
application for execution by the backend database. If not
sanitized properly, web applications may result in SQL
Injection attacks that allow hackers to view information
from the database and/or even wipe it out.

B. Impact of SQL Injection

Once an attacker realizes that a system is vulnerable to
SQL Injection, he is able to inject SQL Query /
Commands through an input form field. This is
equivalent to handing the attacker our database and
allowing him to execute any SQL command including
DROP TABLE to the database.

An attacker may execute arbitrary SQL statements on
the vulnerable system. This may compromise the
integrity of our database and/or expose sensitive
information. Depending on the back-end database in use,
SQL injection vulnerabilities lead to varying levels of
data/system access for the attacker.

C. SQL Injection in 3-Tier web system

Three –tier is a client- server architecture in which the
user interface, functional process logic, Data storage and
access are developed and maintained as independent
modules , most often on separate plateforms .

Three-tier architecture has the following three tiers:

1) Presentation tier (front end)

This is the topmost level of the application. The
presentation tier displays information related to such
services as browsing merchandise, purchasing, and
shopping cart contents. It communicates with other tiers
by outputting results to the browser/client tier and all
other tiers in the network.

2) Application tier (Middle tier)

The logic tier is pulled out from the presentation tier and,
as its own layer, it controls an application’s
functionality by performing detailed processing.

3) Data tier (Backend)

This tier consists of database servers. Here information
is stored and retrieved. This tier keeps data neutral and
independent from application servers or business logic.
Giving data its own tier also improves scalability and
performance.

Shubbham Srivastava / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3225-3228

3225

fig.1(a)

fig.1(b)

BASIC MODEL FOR WEB APPLICATION
Here three tier architecture for web-system is shown in
the figure, In which front end is user interface from
where user sends input SQL queries to database(back
end) and store or reteieve data from database.

SQL injection attack can be detected by analyzing the

SQL query before reaching to database i.e. back end.

II. TYPES OF SQLIA

Tautology attacks- The basic goal of this attack is to inject code
into one or more conditional statements so that they always evaluate
to true. Bypassing authentication page and fetching data is the most
common example of this kind of attack. In this type of injection,
the attacker exploits an inject-able field contained in the
WHERE clause of a query. He transforms this conditional
query into a tautology.and hence causes all the rows in the
database table targeted by the query to be returned.

Logically incorrect query attacks: This type of attack lets
an attacker gather important information about the type
and structure of the back-end database in a Web
application. The attack is considered to be a preliminary,
information gathering step for subsequent attacks.

UNION Attacks: Here, an attacker exploits a vulnerable

parameter to alter the data set returned by a given query.
Using this technique, an attacker can trick the application
into returning data from a table different from the one
that was intended by the developer.

Attackers do this by injecting a statement of the form:

UNION SELECT <rest of injected query>. Because the
attacker is in complete control of the second/injected query,
he can use that query to retrieve information from any
desired table in the database. The result of this attack is that
the database returns a dataset that is the union of the results
of the original/first query and the results of the
injected/second query.

Piggybacked Query : In this attack type, an attacker
tries to inject additional queries along with the original
query, which are said to "piggy-back" onto the original
query. As a result, the database receives multiple SQL
queries for execution. The first is the intended query
which is executed as normal; the subsequent ones are
the injected queries, which are executed in addition to
the first. This type of attack can be extremely harmful.
If successful, attackers can insert and execute virtually
any type of SQL command, including stored procedures,
into the additional queries and have them executed
along with the original query.

Stored Procedure: Many databases have built-in
stored procedures. The attacker executes these
built-in functions using malicious SQL Injection
codes.

III. RELATED WORK

Many existing techniques, such as filtering, information-
flow anal- ysis, penetration testing, and defensive coding,
can detect and pre- vent a subset of the vulnerabilities
that lead to SQLIAs. In this section, we list the most
relevant techniques-

Ali et al.’s Scheme - [3] adopts the hash value
approach to further improve the user authentication
mechanism. They use the user name and password hash
values SQLIPA (SQL Injection Protector for
Authentication) prototype was developed in order to
test the framework. The user name and password hash
values are created and calculated at runtime for the first
time the particular user account is created

William G.J.Halfond et al.’s Scheme- [2]- This
approach works by combining static analysis and
runtime monitoring. In its static part, technique uses
program analysis to automatically build a model of the
legitimate queries that could be generated by the
application. In its dynamic part, technique monitors
the dynamically generated queries at runtime and checks
them for compliance with the statically-generated model.
Queries that violate the model represent potential
SQLIAs and are thus pre- vented from executing on the
database and reported.

SAFELI - proposes a Static Analysis Framework in
order to detect SQL Injection Vulnerabilities. SAFELI

Shubbham Srivastava / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3225-3228

3226

framework aims at identifying the SQL Injection
attacks during the compile-time. This static analysis
tool has two main advantages. Firstly, it does a White-
box Static Analysis and secondly, it uses a Hybrid-
Constraint Solver. For the White-box Static Analysis,
the proposed approach considers the byte-code and
deals mainly with strings. For the Hybrid-Constraint
Solver, the method implements an efficient string
analysis tool which is able to deal with Boolean, integer
and string variables.

Thomas et al.’s Scheme - Thomas et al., in [12] suggest
an automated prepared statement generation algorithm
to remove SQL Injection Vulnerabilities. They
implement their research work using four open
source projects namely: (i) Net-trust, (ii) ITrust, (iii)
WebGoat, and (iv) Roller. Based on the experimental
results, their prepared statement code was able to
successfully replace 94% of the SQLIVs in four open
source projects.

Ruse et al.’s Approach - In [13], Ruse et al. propose a
technique that uses automatic test case generation to
detect SQL Injection Vulnerabilities. The main idea
behind this framework is based on creating a specific
model that deals with SQL queries automatically.
Adding to that, the approach identifies the relationship
(dependency) between sub-queries. Based on the results,
the methodology is shown to be able to specifically
identify the causal set and obtain 85% and 69%
reduction respectively while experimenting on few
sample examples.

Haixia and Zhihong’s Scheme - In [14], Haixia and
Zhihong propose a secure database testing design for
Web applications. They suggest a few things; firstly,
detection of potential input points of SQL Injection;
secondly, generation of test cases automatically then
finally finding the database vulnerability by running
the test cases to make a simulation attack to an
application. The proposed methodology is shown to be
efficient.

Roichman and Gudes’s Scheme - [15] suggests using a
fine-grained access control to web databases. The
authors develop a new method based on fine-
grained access control mechanism. The access to the
database is supervised and monitored by the built-in
database access control. This is a solution to the
vulnerability of the SQL session traceability.
Moreover, it is a framework applicable to almost
all database applications.

SQL-IDS Approach - Kemalis and Tzouramanis in [16]
suggest using a novel specification-based methodology
for the detection of exploitations of SQL injection
vulnerabilities. The proposed query-specific detection
allowed the system to perform focused analysis at
negligible computational overhead without producing
false positives or false negatives.

 AMNESIA - In [17], Junjin proposes AMNESIA
approach for tracing SQL input flow and generating
attack input, JCrasher for generating test cases, and
SQLInjection Gen for identifying hotspots. The
experiment was conducted on two Web applications
running on MySQL1 1 v5.0.21. Based on three
attempts on the two databases, SQLInjectionGen was
found to give only two false negatives in one attempt.
The proposed framework is efficient considering the
fact that it emphasizes on attack input precision.
Besides that, the attack input is properly matched with
method arguments. The only disadvantage of this
approach is that it involves a number of steps using
different tools.

SQLrand Scheme - SQLrand approach [18] is proposed
by Boyd and Keromytis. For the implementation, they
use a proof of concept proxy server in between the Web
server (client) and SQL server; they de-randomized
queries received from the client and sent the request to
the server. This de-randomization framework has 2
main advantages: portability and security. The proposed
scheme has a good performance: 6.5 ms is the
maximum latency overhead imposed on every query.

SQLIA Prevention Using Stored Procedures - Stored
procedures are subroutines in the database which
the applications can make call to [19]. The prevention
in these stored procedures is implemented by a
combination of static analysis and runtime analysis.
The static analysis used for commands
identification is achieved through stored procedure
parser and the runtime analysis by using a
SQLChecker for input identification. [20] proposed
a combination of static analysis and runtime
monitoring to fortify the security of potential
vulnerabilities.

Parse Tree Validation Approach - Buehrer et al. [21]
adopt the parse tree framework. They compared the
parse tree of a particular statement at runtime and its
original statement. They stopped the execution of
statement unless there is a match. This method was
tested on a student Web application using SQLGuard.
Although this approach is efficient, it has two major
drawbacks: additional overheard computation and
listing of input (black or white).

 Dynamic Candidate Evaluations Approach - In [11],
Bisht et al. propose CANDID. It is a Dynamic
Candidate Evaluations method for automatic
prevention of SQL Injection attacks. This framework
dynamically extracts the query structures from every
SQL query location which are intended by the
developer (programmer). Hence, it solves the issue of
manually modifying the application to create the
prepared statements.

Shubbham Srivastava / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3225-3228

3227

A brief overview of various Scheme:

SNo. Author Description
1 Ali et al.’s Adopts the hash value approach .The user name and password hash values are

created and calculated at runtime
2 Halfond et al.’s This approach works by combining static analysis and runtime monitoring.

Technique uses program analysis to automatically build a model and monitors
the dynamically generated queries at runtime and checks them for compliance
with the statically-generated model.

4 Ruse et al.’s The main idea behind this framework is based on creating a specific model that
deals with SQL queries automatically.

5 Buehrer et al. Buehrer et al. adopt the parse tree framework. They compared the parse tree of a
particular statement at runtime and its original statement.

6 Bisht et al. This framework dynamically extracts the query structures from every SQL query
location which are intended by the developer

Tabular representation of Detction and Prevention Scheme:

Sno. Scheme Detction Prevention
1 AMNESIA Yes Yes
2 SQLrand Yes Yes
3 SQLdom Yes Yes
4 SQLGuard Yes No
5 SQLIPA YES No
6 CANDID YES No
7 SQL-IDS YES YES

IV. CONCLUSIONS

SQL injection attacks are one of the largest classes
of security problems most existing technique either
require developers to manually specify the interfaces
to an application or, if automated, are often inadequate
when applied to modern, complex web applications.

In this paper we have reviewed the most popular
existing SQL Injections related issues. We have
presented a survey report on various types of SQL
Injection attacks, vulnerabilities, detection, and
prevention techniques.We have also presented a
summary of various detction and prevention schemes.

V. REFERENCES
[1]- Indrani Balasundaram, E.Ramaraj “An Authentication
Scheme for Preventing SQL Injection Attack Using Hybrid
Encryption(PSQLIA-HBE”(ISSN 1450-216X Vol.53 No.3
(2011),pp.359-368)
[2]-William G.J.Halfond and Alessandro Orso
“AMNESIA:Analysis and Monitoring for Neutralizing SQL-
Injection Attacks”
[3]- Shaukat Ali, Azhar Rauf, Huma Javed “SQLIPA:An
authentication mechanism Against SQL Injection”
[4]- M.Mutuprasanna, Ke Wei,, Suuraj Kothari’ Eliminating SQL
Injection Attacks - A Transparent Defense Mechanism
[5]- William G.J.Halfond ,JeremyViegas, Alessandro Orso “A
Classification of SQL injection Attacks And Countermeasures”
[6]- Romil Rawat , Chandrapal Singh Dangi,Jagdish Patil” Safe
Guard Anomalies against SQL Injection Attacks”
 (IJCA(0975-8887)Volume 22-No.2,May2011)
 [7]- Indrani Balasundaram, Dr.E.Ramaraj “An Approach to
Detection of SQL Injection Attacks in DatabaseUsing Web
Services”(IJCSNS ,VOL. 11 No.1,January 2011
[8]- Debasish Das,Utpal Sharma & D.K. Bhattacharyya “An
Approach to Detect and Prevent SQL Injection Attack Based on
Dynamic Query Matching”
 [9]- A. Tajpour; M. Masrom; M. Z. Heydari.; S. Ibrahim;
"SQLinjection detection and prevention tools assessment,"
Proc. Of ICCSIT 2010, vol.9, no., pp.518-522, 9-11 July 2010

[10]- http://www.owasp.org/index.php/Top_10_2010-A1-Injection,
retrieve on 13/01/2010
 [11] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan.
CANDID: Dynamic Candidate Evaluations for Automatic
Prevention of SQL Injection Attacks. ACM Trans. Inf. Syst. Secur.,
13(2):1–39, 2010
 [12] S. Thomas, L. Williams, and T. Xie, On automated
prepared statement generation to remove SQL injection
vulnerabilities. Information and Software Technology 51, 589–598
(2009).
[13] M. Ruse, T. Sarkar and S. Basu. Analysis & Detection
of SQL Injection Vulnerabilities via Automatic Test Case
Generation of Programs. 10th Annual International Symposium
on Applications and the Internet pp. 31 – 37 (2010)
[14] R.A. McClure, and I.H. Kruger, "SQL DOM: compile
time checking of dynamic SQL statements," Software
Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference on,
pp. 88- 96, 15-21 May 2005.
[15] K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A survey of
SQLinjection defense mechanisms," Proc. Of ICITST 2009, vol.,
no., pp.1-8, 9-12 Nov. 2009
[16] K. Kemalis, and T. Tzouramanis (2008). SQL-
IDS: A Specification-based Approach for SQLinjection
Detection. SAC’08. Fortaleza, Ceará, Brazil, ACM: pp. 2153 2158.
[17] M. Junjin, “An Approach for SQL Injection Vulnerability
Detection,” Proc. of the 6th Int. Conf. on Information Technology:
New Generations, Las Vegas, Nevada, pp. 1411-1414, April 2009.
[18] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing
SQL Injection Attacks. In Proceedings of the 2nd Applied
Cryptography and Network Security Conference, pages 292–302,
June 2004.
[19] K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A survey of
SQL injection defense mechanisms," Proc. Of ICITST 2009,
vol., no., pp.1-8, 9-12 Nov. 2009
[20] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee
and S.-Y.
Kuo, "Securing Web Application Code by Static Analysis and
Runtime Protection," 13th International Conference on World Wide
Web, New York, NY, 2004, pp. 40-52.
[21] G. Buehrer, B.W. Weide, P.A.G. Sivilotti, Using Parse
Tree Validation to Prevent SQL Injection Attacks, in: 5th
International Workshop on Software Engineering and Middleware,
Lisbon, Portugal, 2005, pp. 106–113.

Shubbham Srivastava / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3225-3228

3228

